Optimizing Sweet Potato Productivity through Precision Propagation by Vine Cutting Position and Variety Synergy in Tropical Nigeria

Author's Information:

Solomon Oluwaseyi ADEWUYI*

Department of Crop Science, Faculty of Agriculture, University of Nigeria, Nsukka.

 Ayomide Adeyinka OLUGBADE

University of Fairfax, USA.

Uchenna Noble UKWU

Department of Crop Science, Faculty of Agriculture, University of Nigeria, Nsukka.

 Nathaniel DAUDA

Department of Crop Science, Faculty of Agriculture, University of Nigeria, Nsukka.

 Vivian Ogechi OSADEBE

Department of Crop Science, Faculty of Agriculture, University of Nigeria, Nsukka.

 Patience Amaka ISHIEZE

Department of Crop Science, Faculty of Agriculture, University of Nigeria, Nsukka.

 Chinenye Blessing ARUAH

Department of Crop Science, Faculty of Agriculture, University of Nigeria, Nsukka.

 Adebisola Benedicta FADOJU

Department of Crop Science, Faculty of Agriculture, University of Nigeria, Nsukka.

Vol 02 No 10 (2025):Volume 02 Issue 10 October 2025

Page No.: 305-318

Abstract:

Sweet potato (Ipomoea batatas (L.) Lam) is critical for food security in developing nations, yet yields are limited by suboptimal propagation practices. Vine cutting is the main method, but interaction between varietal genetics and cutting position on growth and yield is poorly understood. This study investigated vine cutting position and variety effects on sweet potato performance in southeast Nigeria. A 2x2 factorial experiment, conducted in 2024 at University of Nigeria, used a randomized complete block design with three replications. Two varieties (Beauregard and Hannah) were propagated using 30 cm top (apical) and basal cuttings. Beauregard outperformed Hannah across all traits (P < 0.05), yielding 34.17% more roots (32. 55 vs. 24.26 Kg/plot), with larger tubers (13.22 cm vs. 12.40 cm length). Top part cuttings surpassed basal, with 87 % more roots (102.60 vs. 55.00 No./plot) and 72% higher yield (35.89 kg/plot vs 20.92 kg/plot). A significant genotype x cutting position interaction (p < 0.05) revealed Beauregard-Top part of vine cutting combinations as optimal achieving peak yield (44.97 Kg/plot) -123% higher than Beauregard-basal. Hannah showed stability but lower yields. Strong correlations emerged between root yield and both root number (r= +0.93) and stem count (r= +0.92), to establish them as reliable key yield predictors. GGE biplot confirmed revealed Beauregard-Top part of vine cutting as the highest yielding, most stable combination, and driving resources efficient tuber enlargement.  In conclusion, top part cuttings of high performing varieties (e.g. Beauregard) synergistically enhance productivity though optimized physiological vigor. This precision propagation strategy offers small holder farmers a low input solution to sustainably intensify sweet potato production, addressing both yield gaps and climate resilience in tropical agroecologies. 

KeyWords:

Top part of vine, Genotype X Environment İnteraction, Propagation Efficiency, Food Security, Root Yield, Sustainable İntensification.

References:

  1. Abukari IA, Yahaya I, Carey EE, Abidin PE, Acheremu K et al. (2024). Effect of chicken manure, compost and cow dung on the growth and yield of sweet potato [Ipomoea batatas (L.) Lam.] under Guinea Savannah agroecological zone of Ghana. Agricultural Sciences 15 (11): 1271–1289. https://doi.org/10.4236/as.2024.1511069
  2. Achebe UA, Udeorah SN, Ilodibia CV (2015). Effect of different vine lengths on the growth and yield of orange-fleshed sweet potato in Ultisol of south-eastern Nigeria. African Journal of Agricultural Research 10 (12): 1401–1406. http://www.ajol.info/index.php/naj/article/view/125470
  3. Akinyemi BK, Madina P, Iyough DD (2024). Effect of vine length and organic manures application on growth and yield of sweet potatoes (Ipomoea batatas L.) in Makurdi, Nigeria. Global Journal of Research in Agriculture & Life Sciences 4 (6): 20–25. https://doi.org/10.5281/zenodo.14099127
  4. Berchie JN, Agyemang K, Tetteh EN, Gaizie I, Amponsah SK et al. (2024). Growth, development and yield of cassava progeny as affected by nutrient status of mother plant. CSIRSpace. https://cspace.csirgh.com/items/show/417.
  5. Cevallos SME, Cobeña Ruiz GA, Mendoza García AA, Mendoza GMV (2019). Behavior of cassava genotypes on substrates and nutrient solutions [Comportamiento de genotipos de yuca en sustratos y soluciones nutritivas]. Revista ESPAMCIENCIA 10 (1): 37–45. https://revistasespam.espam.edu.ec/index.php/Revista_ESPAMCIENCIA/article/view/185.
  6. Devaux A, Goffart JP, Petsakos A, Kromann P, Gatto M et al. (2020). Global food security: Contributions from sustainable potato agri-food systems. In: Campos H, Ortiz O (editors). The Potato Crop. Berlin, Germany: Springer, 3–35. https://doi.org/10.1007/978-3-030-28683-5_1
  7. Ebem EC, Afuape SO, Chukwu SC, Ubi BE (2021). Genotype × environment interaction and stability analysis for root yield in sweet potato [Ipomoea batatas (L.) Lam]. Frontiers in Agronomy 3: 665564. https://doi.org/10.3389/FAGRO.2021.665564
  8. FAO (2010). Food and Agricultural Organization of the United Nations. Website http://www.fao.org/faostat/en/#data/QC 
  9. FAO (2021). Climate-Smart Agriculture Sourcebook, Second Edition. Rome, Italy: Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cb4204en
  10. FAOSTAT (2024). FAOSTAT database: Nigeria crop statistics [online]. Website https://www.fao.org/faostat/en/#data/QCL
  11. FAOSTAT (2025). FAOSTAT database [online]. Website https://www.fao.org/faostat/en/#data/QCL
  12. FAO, IFAD, UNICEF, WFP, WHO (2024). The State of Food Security and Nutrition in the World 2024: Financing to end hunger, food insecurity and malnutrition in all its forms. Rome, Italy: Food and Agriculture Organization. https://doi.org/10.4060/cd1254en
  13. FSIN (2024). Global Report on Food Crises 2024 [online]. Rome, Italy: Food Security Information Network. Website https://www.fsinplatform.org/report/global-report-food-crises-2024/
  14. Gebbers R, Adamchuk VI (2020). Precision agriculture and food security. Science 327 (5967): 828-831. https://doi.org/10.1126/science.1183899
  15. Glenna L, Borlu Y, Gill T, Larson J, Ricciardi V et al. (2017). Food security, sweet potato production, and proximity to markets in Northern Ghana. FACETS 2: 919–936. https://doi.org/10.1139/facets-2017-0027
  16. Godfrey SN (2000). Effects of cutting lengths of sweet potato yields in Sierra Leone. MSc, Njala University, Njala, Sierra Leone.
  17. Hartmann HT, Kester DE, Davies FT Jr, Geneve RL (2011). Hartmann and Kester's Plant Propagation: Principles and Practices, 8th edn. Upper Saddle River, NJ, USA: Prentice Hall.
  18. He S, Wang H, Hao X, Wu Y, Bian X et al. (2021). Dynamic network biomarker analysis discovers IbNAC083 in the initiation and regulation of sweet potato root tuberization. The Plant Journal 108 (4): 793–813. https://doi.org/10.1111/tpj.15478
  19. Helgi Library (2024). Nigeria Agricultural Data: Sweet Potato Production in Nigeria. Website https://www.helgilibrary.com/indicators/sweet-potato-production/nigeria/
  20. Idoko JA, Ugoo TR, Osang PO (2017). Effect of intra-row spacing on the growth and yield of sweet potato [Ipomoea batatas (L.) Lam]/maize (Zea mays L.) and sweet potato [Ipomoea batatas (L.) Lam]/soybean (Glycine max L. Merr) intercrops in Makurdi, Benue State. In: Proceedings of the 4th Annual Conference of Crop Science Society of Nigeria; Uyo, Nigeria. 15–19.
  21. IITA (2011). Sweet potato. In: Sustainable Food Production in Sub-Saharan Africa: International Institute of Tropical Agriculture (IITA) Contribution. Ibadan, Nigeria: International Institute of Tropical Agriculture, pp. 79-83.
  22. Kassam A, Friedrich T, Derpsch R (2018). Global spread of Conservation Agriculture. International Journal of Environmental Studies 76 (1): 29-51. https://doi.org/10.1080/00207233.2018.1494927
  23. Khaspuria G, Khandelwal A, Agarwal M, Bafna M, Yadav R et al. (2024). Adoption of precision agriculture technologies among farmers: A comprehensive review. Journal of Scientific Research and Reports 30 (7): 671–686. https://doi.org/10.9734/jsrr/2024/v30i72180
  24. Kousar S, Ahmed F, Pervaiz A, Bojnec Š (2021). Food insecurity, population growth, urbanization and water availability: The role of government stability. Sustainability 13 (22): 12336. https://doi.org/10.3390/su132212336
  25. Lencha B, Birksew A, Dikale G (2016). The evaluation of growth performance of sweet potato (Ipomoea batatas L.) Awassa var. by using different type of vine cuttings. Food Science and Quality Management 54: 55-68. 
  26. Low JW, Mwanga ROM, Andrade M, Carey E, Ball AM (2017). Tackling vitamin A deficiency with biofortified sweet potato in sub-Saharan Africa. Global Food Security 14: 23–30. https://doi.org/10.1016/j.gfs.2017.01.004
  27. Makumbu BM, Kokou K, Sikirou M, Adetoro N, Kajibwami A, Nyende AB (2024). Performances of plantlets from selected cassava (Manihot esculenta Crantz) genotypes under Semi-Autotrophic Hydroponics (SAH) using different substrates. Journal of Agriculture Science and Technology 22 (6): 66-89. https://doi.org/10.4314/jagst.v22i6.5
  28. Maulana H, Solihin E, Trimo L, Hidayat S, Wijaya AA et al. (2023). Genotype-by-environment interactions (GEIs) and evaluate superior sweet potato (Ipomoea batatas [L.] Lam) using combined analysis and GGE biplot. Heliyon 9: e20203. https://doi.org/10.1016/j.heliyon.2023.e20203
  29. Muhammad Z, Yahaya S (2018). Correlation and path coefficient analysis for some selected growth, yield traits and root yield in sweet potato (Ipomoea batatas [L.] Lam) cultivars. Faman Journal 18: 62–72. https://www.researchgate.net/publication/358671641
  30. Ncube N, Mutetwa M (2019). Effect of cutting position and vine pruning level on yield of sweet potato (Ipomoea batatas L.). Journal of Aridland Agriculture 5: 1–5. https://doi.org/10.25081/jaa.2019.v5.5255
  31. Neupane B, Bhattarai B, Gurung L, Rawal JS, Joshi GR (2024). Integrating climate-smart agriculture for sustainable agriculture: Opportunities, challenges and future directions. Archives of Agriculture and Environmental Science 9 (3): 449–458. https://doi.org/10.26832/24566632.2024.090307
  32. NRCRI (2022). National Root Crops Research Institute Annual Report. Umudike, Nigeria: NRCRI.
  33. Okoro EC, Ugwu EB, Onah IG, Omeje LC (2021). Rainfall and solar irradiance monitoring in Nsukka zone, Nigeria. European Journal of Statistics and Probability 9: 1-10.
  34. Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB et al. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability 1 (8): 441–446. https://doi.org/10.1038/s41893-018-0114-0
  35. Reuters (2025). Conflict and climate drive record global hunger in 2024, UN says. Website https://www.reuters.com/sustainability/climate-energy/conflict-climate-drive-record-global-hunger-2024-un-says-2025-06-22/
  36. Rosenstock TS, Lamanna C, Chesterman S, Bell P, Arslan A et al. (2016). The scientific basis of climate-smart agriculture: A systematic review protocol. CCAFS Working Paper no. 138. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security.
  37. Roy A, Kumar S, Pyne S, Saha P, Das A (2024). Precision agriculture: Analyzing the use of advanced technologies, data analytics and remote sensing for site-specific crop management and resource optimization. In: Smart Agriculture Technologies: Innovations and Applications (Vol. 3). Singapore: Springer Nature, pp. 53-75. https://doi.org/10.58532/v3bcag23ch5
  38. Sakaigaichi T, Terajima Y, Suematsu K, Kamada E, Kobayashi A et al. (2023). Analysis of sweetpotato shoot traits diversity and its relationship with storage root yield under short-period cultivation. Genetic Resources and Crop Evolution 71 (1): 397–411. https://doi.org/10.1007/s10722-023-01633-5
  39. Sanyaolu M, Sadowski A (2024). The role of precision agriculture technologies in enhancing sustainable agriculture. Sustainability 16 (15): 6668. https://doi.org/10.3390/su16156668
  40. Sheat S, Mushi E, Gwandu F, Sikirou M, Baleke P et al. (2024). Cut, root, and grow: Simplifying cassava propagation to scale. Plants 13 (4): 471. https://doi.org/10.3390/plants13040471
  41. Singh K, Huang Y, Young W, Harvey L, Hall M et al. (2025). Sweet potato yield prediction using machine learning based on multispectral images acquired from a small unmanned aerial vehicle. Agriculture 15 (4): 420. https://doi.org/10.3390/agriculture15040420
  42. Singh V (2024). Advances in precision agriculture technologies for sustainable crop production. Journal of Scientific Research and Reports 30 (2): 61–71. https://doi.org/10.9734/jsrr/2024/v30i21844
  43. Soil Survey Staff (2003). Keys to Soil Taxonomy, 9th edn. Washington, DC, USA: USDA Natural Resources Conservation Service.
  44. Sun H, Tusso S, Dent CI, Goel M, Wijfjes RY et al. (2025). The phased pan-genome of tetraploid European potato. Nature 642 (8067): 389–397. https://doi.org/10.1038/s41586-025-08843-0
  45. Tanaka JS, Sekioka TT (2010). Sweet potato production in Hawaii. In: Proceedings of the 4th Symposium of the International Society for Tropical Root Crops; Columbia. 150-151.
  46. Tilman D, Balzer C, Hill J, Befort BL (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America 108: 20260–20264. https://doi.org/10.1073/pnas.1116437108
  47. Udemezue JC (2019). Constraints to root and tuber crop production in Nigeria. Journal of Agricultural Extension 23: 111-119.
  48. Ukwu UN, Muller O, Meier-Gruell M, Uguru MI (2025). Yield sensitivity of mungbean (Vigna radiata L.) genotypes to different agrivoltaic environments in tropical Nigeria. Plants 14 (9): 1326. https://doi.org/10.3390/plants14091326
  49. UNDP (2024). Nigeria SDG Progress Report. Website https://www.undp.org/nigeria/publications
  50. Xiao Y, Zhu M, Gao S (2022). Genetic and genomic research on sweet potato for sustainable food and nutritional security. Genes 13 (10): 1833. https://doi.org/10.3390/genes13101833
  51. Yan W, Kang MS (2003). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. Boca Raton, FL, USA: CRC Press.