Understanding Cronbach’s Alpha in Social and Management Studies

Author's Information:

Adetayo O. ADENIRAN (Ph.D., MInsTA)

University of Ilesa, Ilesa, Osun State, Nigeria; Department of Transport Planning and Logistics

Vol 02 No 02 (2025):Volume 02 Issue 02 February 2025

Page No.: 11-16

Abstract:

In any research, the accuracy of assessments or evaluations can be improved when social and management science researchers work to develop easy-to-understand, accurate, and precise questions and questionnaires. Two essential components in assessing a measuring tool are validity and reliability. Surveys, simulations, and traditional knowledge, skill, or attitude assessments are examples of instruments. Concepts, psychomotor capability, and emotive values can be measured using instruments. The essence of validity is to identify the extent to which an instrument measures what it is supposed to measure. Reliability is the capacity of an instrument to measure consistently. Both reliability and validity of instruments are strongly connected. Without reliability, an instrument cannot be considered legitimate. However, the validity of an instrument is independent of its dependability, while the dependability of an instrument may be objectively assessed. This study identifies Cronbach’s Alpha as the most employed objective reliability metric within the social and management discipline.

KeyWords:

Coefficient Alpha, Cronbach’s Alpha, Reliability

References:

  1. Adams, W. K., & Wieman, C. E. (2010). Development and validation of instruments to measure learning of expert-like thinking. International Journal of Science Education, 33(9), 1289–1312. doi:10.1080/09500693.2010.512369.
  2. Adeniran, A. O. (2019). Application of Likert Scale’s Type and Cronbach’s Alpha Analysis in an Airport Perception Study. Scholar Journal of Applied Science Research, 2(4), 01-05. doi:10.3619/SJASR.1000223
  3. Auewarakul, C., Downing, S., Praditsuwan, R., & Jaturatamrong, U. (2005). Item analysis to improve reliability for an internal medicine undergraduate OSCE. Adv Health Sci Educ Theory Pract., 10:105-13.
  4. Bland, J., & Altman, D. (1997). Statistics notes: Cronbach’s Alpha. BMJ., 314:275.
  5. Brown, J. D. (1988). Understanding research in second language learning: A teacher’s guide to statistics and research design. Cambridge: Cambridge University Press.
  6. Brown, J. D. (1996). Testing in Language Programs. Upper Saddle River, NJ: Prentice Hall.
  7. Brown, J. D. (1997). Statistics Corner: Questions and answers about language testing statistics: Reliability of surveys. Shiken: JALT Testing & Evaluation SIG Newsletter, 1 (2), 17-19. Available at: http://jalt.org/test/bro_2.htm
  8. Brown, J. D. (1998). Statistics Corner: Questions and answers about language testing statistics: Reliability and cloze test length. Shiken: JALT Testing & Evaluation SIG Newsletter, 2 (2), 19-22. Available at: http://jalt.org/test/bro_3.htm
  9. Brown, J. D. (1999). Statistics Corner: Questions and answers about language testing statistics: The standard error vs. the standard error of measurement. Shiken: JALT Testing & Evaluation SIG Newsletter, 3 (1), 15-19. Available at: http://jalt.org/test/bro_4.htm.


 

  1. Brown, J. D. (2001). Statistics Corner. Questions and answers about language testing statistics: Can we use the Spearman-Brown prophecy formula to defend low reliability? Shiken: JALT Testing & Evaluation SIG Newsletter, 4 (3), 7-9. Available at: http://jalt.org/test/bro_9.htm.
  2. Casanoves, M., González, Á., Salvadó, Z., Haro, J., & Novo, M. (2015). Knowledge and attitudes towards biotechnology of elementary education preservice teachers: the first Spanish experience. International Journalof Science Education, 37(17), 2923–2941. doi:10.1080/09500693.2015.1116718.
  3. Cohen, R., & Swerdlik, M. (2010). Psychological testing and assessment. Boston: McGraw-Hill Higher Education.
  4. Cortina, J. (1993). What is coefficient Alpha: an examination of theory and applications. Journal of Applied Psychology, 78:98-104.
  5. Cronbach, L. (1951). Coefficient Alpha and the internal structure of tests. Psychomerika, 16:297- 334.
  6. Cronbach, L. J. (1970). Essentials of psychological testing (3rd ed.). New York: Harper & Row.
  7. DeVellis, R. (2003). Scaledevelopment: theory and applications: theory and application. Thousand Okas, CA: Sage.
  8. Eberhard, L., Hassel, A., Bäumer, A., Becker, J., BeckMußotter, J., & Bömicke,W. (2011). Analysis of quality and feasibility of an objective structured clinical examination (OSCE) in preclinical dental education. Eur J Dent Educ. 2011; 15: 1-7.
  9. Graham, J. (2006). Congeneric and (Essentially) Tau-Equivalent estimates of score reliability: what they are and how to use them. Educational Psychological Measurement, 66:930-44.
  10. Green, S., Lissitz, R., & Mulaik, S. (1977). Limitations of coefficient Alpha as an index of test unidimensionality. Educational Psychological Measurement, 37:827-38.
  11. Green, S., & Thompson, M. (2005). Structural equation modeling in clinical psychology research In: Roberts M, Ilardi S, editors. Handbook of research in clinical psychology. Oxford: Wiley- Blackwell.
  12. Griethuijsen, R. A. L. F., Eijck, M. W., Haste, H.,

Brok, P. J., Skinner, N. C., & Mansour, N., (2014). Global patterns in students’ views of science and interest in science. Research in Science Education, 45(4), 581–603. doi:10.1007/s11165-014-9438-6.

  1. Howe, C., Ilie, S., Guardia, P., Hofmann, R., Mercer, N., & Riga, F. (2014). Principled improvement in science: forces and proportional relations in early secondary-school teaching.


 

International Journal of Science Education, 37(1), 162–184. doi:10.1080/09500693.2014.975168.

  1. Kline, P. (1994). An easy guide to factor analysis New York: Routledge; 1994.
  2. Kuder, G. F., & Richardson, M. W. (1937). The theory of estimation of test reliability. Psychometrika. 2, 151-160. Available at: https:// jalt.org/test/PDF/Brown13.pdfnti
  3. Iramaneerat, C., Yudkowsky, R., & Downing, S. (2008). Quality control of an OSCE using generalizability theory and many-faceted Rasch measurement. Adv Health Sci Educ Theory Pract., 13:479-93.
  4. Jasper, F. (2010). Applied dimensionality and test structure assessment with the START-M mathematics test. The International Journal of Educational and Psychological Assessment, 6:104- 25.
  5. Lawson, D. (2006). Applying generalizability theory to high stakes objective structured clinical examinations in a naturalistic environment. J. Manipulative Physiol Ther., 29:463-7.
  6. Miller, M. (1995). Coefficient Alpha: a basic introduction from the perspectives of classical test theory and structural equation modeling. Structural Equation Modeling, 2:255-73.
  7. Mumba, F., Mbewe, S., & Chabalengula, V. M. (2015). Elementary school teachers’ familiarity, conceptual knowledge, and interest in light. International Journal of Science Education, 37(2), 185–209. doi:10.1080/09500693.2014.971906.
  8. Mun, J.,  Mun,  K.,  &  Kim,  S.-W.  (2015).

Exploration of Korean students’ scientific imagination using the scientific imagination inventory. International Journal of Science Education,                  37(13),                  2091-2112.

doi:10.1080/09500693.2015.1067380.

  1. Nunnally, J., & Bernstein, L. (1994). Psychometric theory. New York: McGraw-Hill Higher, INC.
  2. Schmitt, N. (1996). Uses and abuses of coefficient Alpha. Psychological Assessment; 8:350-3.
  3. Schoonheim-Klein, M., Muijtjens, A., Habets, L., Manogue, M., Van der Vleuten,C., & Hoogstraten,

J. (2008). On the reliability of a dental OSCE, using SEM: effect of different days. Eur. J. Dent. Educ., 2008; 12: 131-137.

  1. Streiner, D. (2003). Starting at the beginning: an introduction to coefficient Alpha and internal consistency. Journal of Personality Assessment, 80:99-103.
  2. Taber, K. S. (2013). Classroom-based research and evidence-based practice: an introduction (2nd ed.). London: Sage.


 

  1. Tate, R. (2003). A comparison of selected empirical methods for assessing the structure of responses to test items. Applied Psychological Measurement, 27:159-203.
  2. Tavakol, M, Mohagheghi, M. A., & Dennick, R. (2008). Assessing the skills of surgical residents using simulation. J Surg Educ. 65(2):77-83.
  3. Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s Alpha. International Journal of Medical Education, 2, 53-55. doi: 10.5116/ijme.4dfb.8dfd53