Assessing the Reliability of Approved Simulation Models for Climate Prediction in The Gulf and Middle East
DOI:
https://doi.org/10.55677/csrb/06-V02I02Y2025Keywords:
climate change, simulation models, Gulf, Middle East, model evaluation, precipitation, temperature, climate extremesAbstract
.
References
A. T. Tredennick, G. Hooker, S. P. Ellner, and P. B. Adler, "A practical guide to selecting models for exploration, inference, and prediction in ecology," Ecology, 2021. wiley.com
R. Xin, C. Wang, Y. Zhang, R. Peng, R. Li, and J. Wang, "Efficient removal of greenhouse gases: machine learning-assisted exploration of metal–organic framework space," ACS, 2024. [HTML]
M. Pichler and F. Hartig, "Machine learning and deep learning—A review for ecologists," Methods in Ecology and Evolution, 2023. wiley.com
D. Francis and R. Fonseca, "Recent and projected changes in climate patterns in the Middle East and North Africa (MENA) region," Scientific Reports, 2024. nature.com
Driouech, F., ElRhaz, K., Moufouma-Okia, W., Arjdal, K., & Balhane, S. (2020). Assessing future changes of climate extreme events in the CORDEX-MENA region using regional climate model ALADIN-climate. Earth Systems and Environment, 4(3), 477-492.
V. Eyring, W. D. Collins, P. Gentine, E. A. Barnes, et al., "Pushing the frontiers in climate modelling and analysis with machine learning," Climate Change, 2024. google.com
P. Lucas-Picher, D. Argüeso, E. Brisson, "Convection‐permitting modeling with regional climate models: Latest developments and next steps," *Reviews: Climate*, 2021. wiley.com
Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y., ... & Lelieveld, J. (2022). Climate change and weather extremes in the Eastern Mediterranean and Middle East. Reviews of geophysics, 60(3), e2021RG000762.
Flato, G. M. (2011). Earth system models: an overview. Wiley Interdisciplinary Reviews: Climate Change, 2(6), 783-800.
Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539-42559.
Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe’Er, G., Singer, A., ... & Travis, J. M. J. (2016). Improving the forecast for biodiversity under climate change. Science, 353(6304), aad8466.
Araujo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. Global change biology, 11(9), 1504-1513.
Qiu, H., Li, T., & Zhang, B. (2024). The impact of climate change on the earth system and its simulation predictions: Progress, challenges, and future directions. Geographical Research Bulletin, 3, 231-246.
Adger, W. N., Arnell, N. W., & Tompkins, E. L. (2005). Successful adaptation to climate change across scales. Global environmental change, 15(2), 77-86.
Wabnitz, C. C., Lam, V. W., Reygondeau, G., Teh, L. C., Al-Abdulrazzak, D., Khalfallah, M., ... & Cheung, W. W. (2018). Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf. PloS one, 13(5), e0194537.
Bonan, G. B., & Doney, S. C. (2018). Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 359(6375), eaam8328.
Hemming, D., Buontempo, C., Burke, E., Collins, M., & Kaye, N. (2010). How uncertain are climate model projections of water availability indicators across the Middle East?. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1931), 5117-5135.
Nalau, J., & Cobb, G. (2022). The strengths and weaknesses of future visioning approaches for climate change adaptation: A review. Global Environmental Change, 74, 102527.
Al-Sarihi, A., & Mason, M. (2020). Challenges and opportunities for climate policy integration in oil-producing countries: the case of the UAE and Oman. Climate Policy, 20(10), 1226-1241.
Trenberth, K. E. (Ed.). (1992). Climate system modeling. Cambridge University Press.
Feitelson, E., & Tubi, A. (2017). A main driver or an intermediate variable? Climate change, water and security in the Middle East. Global environmental change, 44, 39-48.
Edwards, P. N. (2011). History of climate modeling. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 128-139.
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., ... & Taylor, K. E. (2007). Climate models and their evaluation. In Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (FAR) (pp. 589-662). Cambridge University Press.
Salimi, M., & Al-Ghamdi, S. G. (2020). Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East. Sustainable Cities and Society, 54, 101948.
Grotjahn, R., Black, R., Leung, R., Wehner, M. F., Barlow, M., Bosilovich, M., ... & Prabhat. (2016). North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Climate Dynamics, 46, 1151-1184.
Ghil, M., & Lucarini, V. (2020). The physics of climate variability and climate change. Reviews of Modern Physics, 92(3), 035002.
Giorgi, F., & Mearns, L. O. (1991). Approaches to the simulation of regional climate change: a review. Reviews of geophysics, 29(2), 191-216.
National Research Council, Division on Earth, Life Studies, Board on Atmospheric Sciences, Committee on Assessment of Intraseasonal to Interannual Climate Prediction, & Predictability. (2010). Assessment of intraseasonal to interannual climate prediction and predictability. National Academies Press.
Deng, X., Zhao, C., & Yan, H. (2013). Systematic modeling of impacts of land use and land cover changes on regional climate: a review. Advances in Meteorology, 2013(1), 317678.
Balsamo, G., Agusti-Parareda, A., Albergel, C., Arduini, G., Beljaars, A., Bidlot, J., ... & Zeng, X. (2018). Satellite and in situ observations for advancing global Earth surface modelling: A review. Remote Sensing, 10(12), 2038.
Rummukainen, M. (2016). Added value in regional climate modeling. Wiley Interdisciplinary Reviews: Climate Change, 7(1), 145-159.
Toye, H., Zhan, P., Gopalakrishnan, G., Kartadikaria, A. R., Huang, H., Knio, O., & Hoteit, I. (2017). Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing. Ocean Dynamics, 67, 915-933.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., ... & Wilkin, J. (2008). Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of computational physics, 227(7), 3595-3624.
Xie, S. P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., ... & Watanabe, M. (2015). Towards predictive understanding of regional climate change. Nature Climate Change, 5(10), 921-930.
Baig, F., Ali, L., Faiz, M. A., Chen, H., & Sherif, M. (2024). How accurate are the machine learning models in improving monthly rainfall prediction in hyper arid environment?. Journal of Hydrology, 633, 131040.
Bader, D., Covey, C., Gutowski, W., Held, I., Kunkel, K., Miller, R., ... & Zhang, M. (2008). Climate models: an assessment of strengths and limitations.
Raäisaänen, J. (2007). How reliable are climate models?. Tellus A: Dynamic Meteorology and Oceanography, 59(1), 2-29.
Zscheischler, J., Westra, S., Van Den Hurk, B. J., Seneviratne, S. I., Ward, P. J., Pitman, A., ... & Zhang, X. (2018). Future climate risk from compound events. Nature climate change, 8(6), 469-477.
Knutti, R., & Sedláček, J. (2013). Robustness and uncertainties in the new CMIP5 climate model projections. Nature climate change, 3(4), 369-373.
National Academies of Sciences, Life Studies, Board on Atmospheric Sciences, Committee on Extreme Weather Events, & Climate Change Attribution. (2016). Attribution of extreme weather events in the context of climate change. National Academies Press.
Sadoff, C., & Muller, M. (2009). Water management, water security and climate change adaptation: early impacts and essential responses. Stockholm: Global Water Partnership.
Rocha, R., Atun, R., Massuda, A., Rache, B., Spinola, P., Nunes, L., ... & Castro, M. C. (2021). Effect of socioeconomic inequalities and vulnerabilities on health-system preparedness and response to COVID-19 in Brazil: a comprehensive analysis. The Lancet Global Health, 9(6), e782-e792.
National Research Council, Life Studies, Board on Atmospheric Sciences, & Committee on America's Climate Choices. (2011). America's climate choices. National Academies Press.
Warner, T. T. (2009). Desert meteorology. Cambridge University Press.
Laderach, P., Merrey, D. J., Schapendonk, F., Dhehibi, B., Ruckstuhl, S., Mapedza, E., ... & Nicol, A. (2022). Strengthening Climate Security in the Middle East and North Africa Region. IWMI.
Hasanean, H., & Almazroui, M. (2015). Rainfall: features and variations over Saudi Arabia, a review. Climate, 3(3), 578-626.
Weaver, C. P., Lempert, R. J., Brown, C., Hall, J. A., Revell, D., & Sarewitz, D. (2013). Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks. Wiley Interdisciplinary Reviews: Climate Change, 4(1), 39-60.
Gates, W. L., Rowntree, P. R., & Zeng, Q. C. (1990). Validation of climate models. In Climate change: the IPCC scientific assessment (pp. 93-130). Cambridge University Press.
Zittis, G. (2018). Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa. Theoretical and applied climatology, 134(3), 1207-1230.
Acquaotta, F., & Fratianni, S. (2014). The importance of the quality and reliability of the historical time series for the study of climate change. Revista Brasileira de Climatologia, 14, 20-38.
Sonnewald, M., Lguensat, R., Jones, D. C., Dueben, P. D., Brajard, J., & Balaji, V. (2021). Bridging observations, theory and numerical simulation of the ocean using machine learning. Environmental Research Letters, 16(7), 073008.
Baghanam, A. H., Nourani, V., Bejani, M., Pourali, H., Kantoush, S. A., & Zhang, Y. (2024). A systematic review of predictor screening methods for downscaling of numerical climate models. Earth-Science Reviews, 104773.
Rehman, A., Naz, S., & Razzak, I. (2022). Leveraging big data analytics in healthcare enhancement: trends, challenges and opportunities. Multimedia Systems, 28(4), 1339-1371.
Dilling, L., & Lemos, M. C. (2011). Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy. Global environmental change, 21(2), 680-689.
Madhavi, M., Kolikipogu, R., Prabakar, S., Banerjee, S., Maguluri, L. P., Raj, G. B., & Balaram, A. (2024). Experimental evaluation of remote sensing–based climate change prediction using enhanced deep learning strategy. Remote Sensing in Earth Systems Sciences, 1-15.
Duan, H., Zhang, G., Wang, S., & Fan, Y. (2019). Robust climate change research: a review on multi-model analysis. Environmental Research Letters, 14(3), 033001.
Evans, J. P., Smith, R. B., & Oglesby, R. J. (2004). Middle East climate simulation and dominant precipitation processes. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(13), 1671-1694.
Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., ... & Williamson, M. S. (2019). Taking climate model evaluation to the next level. Nature Climate Change, 9(2), 102-110.
Bracco, A., Brajard, J., Dijkstra, H. A., Hassanzadeh, P., Lessig, C., & Monteleoni, C. (2024). Machine learning for the physics of climate. Nature Reviews Physics, 1-15.
Al Abadla, Z., Ahmed, M., Aldashti, H., & Wahab, M. M. A. (2024). Assessing Past and Future Heat and Cold Waves over Iraq Using CMIP6 Model. Iraqi Journal of Science, 4642-4655.
Bronstert, A., Kolokotronis, V., Schwandt, D., & Straub, H. (2007). Comparison and evaluation of regional climate scenarios for hydrological impact analysis: General scheme and application example. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(12), 1579-1594.
Malik, A., Stenchikov, G., Mostamandi, S., Parajuli, S., Lelieveld, J., Zittis, G., ... & Usman, M. (2024). Accelerated historical and future warming in the Middle East and North Africa. Journal of Geophysical Research: Atmospheres, 129(22), e2024JD041625.
Berkhout, F., Hertin, J., & Jordan, A. (2002). Socio-economic futures in climate change impact assessment: using scenarios as ‘learning machines’. Global Environmental Change, 12(2), 83-95.
Karpatne, A., Atluri, G., Faghmous, J. H., Steinbach, M., Banerjee, A., Ganguly, A., ... & Kumar, V. (2017). Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Transactions on knowledge and data engineering, 29(10), 2318-2331.
Bergmeir, C., & Benítez, J. M. (2012). On the use of cross-validation for time series predictor evaluation. Information Sciences, 191, 192-213.
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj computer science, 7, e623.
Cimini, G., Squartini, T., Saracco, F., Garlaschelli, D., Gabrielli, A., & Caldarelli, G. (2019). The statistical physics of real-world networks. Nature Reviews Physics, 1(1), 58-71.
Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth, E., Carvalhais, N., ... & Zhou, X. H. (2012). A framework for benchmarking land models. Biogeosciences, 9(10), 3857-3874.
Kleijnen, J. P., Sanchez, S. M., Lucas, T. W., & Cioppa, T. M. (2005). State-of-the-art review: a user’s guide to the brave new world of designing simulation experiments. INFORMS Journal on Computing, 17(3), 263-289.
Amiri, Z., Heidari, A., & Navimipour, N. J. (2024). Comprehensive survey of artificial intelligence techniques and strategies for climate change mitigation. Energy, 132827.
Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of hydrology, 456, 12-29.
Stott, P. A., Christidis, N., Otto, F. E., Sun, Y., Vanderlinden, J. P., van Oldenborgh, G. J., ... & Zwiers, F. W. (2016). Attribution of extreme weather and climate‐related events. Wiley Interdisciplinary Reviews: Climate Change, 7(1), 23-41.
Yang, M., Zhao, Y., Li, C., & Yang, J. (2024). A review of spatiotemporal variations in temperature and precipitation: Trend analysis, driving mechanisms, and methodological evaluation. Advances in Resources Research, 4(4), 836-859.
Prabhakar, S. V., Srinivasan, A., & Shaw, R. (2009). Climate change and local level disaster risk reduction planning: need, opportunities and challenges. Mitigation and adaptation strategies for global change, 14, 7-33.
Pramova, E., Locatelli, B., Djoudi, H., & Somorin, O. A. (2012). Forests and trees for social adaptation to climate variability and change. Wiley Interdisciplinary Reviews: Climate Change, 3(6), 581-596.
Dada, M. A., Oliha, J. S., Majemite, M. T., Obaigbena, A., & Biu, P. W. (2024). A review of predictive analytics in the exploration and management of us geological resources. Engineering Science & Technology Journal, 5(2), 313-337.
Measham, T. G., Preston, B. L., Smith, T. F., Brooke, C., Gorddard, R., Withycombe, G., & Morrison, C. (2011). Adapting to climate change through local municipal planning: barriers and challenges. Mitigation and adaptation strategies for global change, 16, 889-909.
Amaru, S., & Chhetri, N. B. (2013). Climate adaptation: Institutional response to environmental constraints, and the need for increased flexibility, participation, and integration of approaches. Applied Geography, 39, 128-139.