Multi Resistance of Staphylococcus aureus isolated from the Nasal Cavity to Vancomycin and Some antibiotics

Author's Information:

Wasan Dheyaa Fahem

Department of Biology, College of Education for Pure Sciences, University of Kirkuk, Kirkuk- Iraq.

Shara Najmaldeen Abdullah

Department of Biology, College of Education for Pure Sciences, University of Kirkuk, Kirkuk- Iraq.

Salah Salman Zain Alabden

Department of Biology, College of Education for Pure Sciences, University of Kirkuk, Kirkuk- Iraq.

Vol 02 No 05 (2025):Volume 02 Issue 05 May 2025

Page No.: 146-153

Abstract:

Staphylococcus aureus is a common colonizer in approximately 30% of healthy individuals, yet it is one of the most frequently isolated species in community-acquired MRSA (CA-MRSA) infections. This study was conducted to isolate and identify S. aureus from nasal cavities of patients with the common cold attending medical clinics in the Al-Hajjaj neighborhood of Kirkuk city. Patients (age 1–60 years) were selected between November 1 and December 1, 2023. A total of 40 nasal swabs were collected, and diagnostic tests were performed using cultural, microscopic, and biochemical methods.

Out of 14 randomly selected samples, 8 isolates of S. aureus were identified (20% prevalence), and all showed complete resistance to vancomycin. Antibiotic susceptibility was tested using the disk diffusion method with 9 antibiotics. The isolates showed 100% resistance to vancomycin and piperacillin, and 62% resistance to ceftriaxone. In contrast, sensitivity was observed to imipenem and ofloxacin (100%), gentamicin (87.5%), amikacin and ceftazidime (75%), and ciprofloxacin (62.5%).

The study aims the prevalence of nasal S. aureus among cold patients and emphasizes the growing concern of multidrug resistance. The findings suggest that the misuse or overuse of antibiotics, particularly without medical supervision, plays a significant role in the emergence of resistant strains, which pose a challenge to conventional treatment approaches.

KeyWords:

Staphylococcus aureus; Nasal Cavity; Vncomycin; antibiotics

References:

Reddy, P. N., Srirama, K., & Dirisala, V. R. (2017). An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infectious Diseases.

Hallabjaiy, R. M., Darogha, S. N., & Hamad, P. A. (2014). Vancomycin resistance among methicillin-resistant Staphylococcus aureus isolated from clinical samples in Erbil City-Iraq. Medical Journal of Islamic World Academy of Sciences, 22(4), 168-174.

رشا نزار حسون, رنا أبراهيم محمد, & ريم زهير شنشل. (2008). Antibacterial inhibition of three medical herbal extracts against Staphylococcus aureus and Escherichia coli. College Of Basic Education Researches Journal, 8(1).‏

Licitra, G. (2013). History of antibiotics. Clinical Microbiology and Infection, 19(1), 5–10.

Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4). https://doi.org/10.1128/cmr.00020-18

Edham, M. H. (2017). Bacteriological study of urinary tract infection to children in Kirkuk city. Kirkuk Journal of Science, 12(3).

Gnanamani, A., Hariharan, P., & Paul-Satyaseela, M. (2017). Staphylococcus aureus: Pathogenesis, disease progression, and biocompatible interventions. Critical Reviews in Microbiology, 43(3), 318–336

Turnidge, J., Chang, F. Y., Fowler, V. G., & Rao, N. (2008). Staphylococcus aureus. Updated December. Guided Medline Search.‏

Bitrus, A., Peter, O., Abbas, M., & Goni, M. (2018). Staphylococcus aureus: A review of antimicrobial resistance mechanisms. Veterinary Sciences: Research and Reviews, 4(2), 43-54. http://dx.doi.org/10.17582/journal.vsrr/2018/4.2.43.54

Rasheed, N. A., & Hussein, N. R. (2021). Staphylococcus aureus: an overview of discovery, characteristics, epidemiology, virulence factors and antimicrobial sensitivity. European Journal of Molecular & Clinical Medicine, 8(3), 1160-1183.‏

Thakur, P., Nayyar, C., Tak, V., & Saigal, K. (2017). Mannitol-fermenting and tube coagulase-negative staphylococcal isolates: unraveling the diagnostic dilemma. Journal of laboratory physicians, 9(01), 065-066.‏

Khalf, S. H. (2012). Detection of siderophores from Staphylococcus aureus, Klebsiella pneumonia Isolated from rhinitis cases. College of Basic Education Research Journal, 11(2), 568-0.‏

Foster, T. J. (2005). Immune evasion by staphylococci. Nature reviews microbiology, 3(12), 948-958.‏

Jawetz, E., Brooks, G. F., Carroll, K. C., Butel, J. S., Morse, S. A., & Mietzner, T. A. (1991). Jawetz, Melnick, & Adelberg's medical microbiology. (No Title).‏

Abod, H. A. (2017). The effect of silver nanoparticles prepared using Aspergillus niger in some pathogenic bacteria. Kirkuk Journal of Science, 12(1).‏

Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 103-109. https://doi.org/10.1016/j.nano.2009.04.006

Kest, H., & Kaushik, A. (2019). Vancomycin-resistant Staphylococcus aureus: Formidable threat or silence before the storm. J Infect Dis Epidemiol, 5(5), 93. DOI: 10.23937/2474-3658/1510093

Shariati, A., Dadashi, M., Moghadam, M. T., van Belkum, A., Yaslianifard, S., & Darban-Sarokhalil, D. (2020). Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: a systematic review and meta-analysis. Scientific reports, 10(1), 12689. https://doi.org/10.1038/s41598-020-69058-z

McGuinness, W. A., Malachowa, N., & DeLeo, F. R. (2017). Focus: infectious diseases: vancomycin resistance in Staphylococcus aureus. The Yale journal of biology and medicine, 90(2), 269.

Cong, Y., Yang, S., & Rao, X. (2020). Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. Journal of advanced research, 21, 169-176. https://doi.org/10.1016/j.jare.2019.10.005

Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in cellular and infection microbiology, 10, 107. https://doi.org/10.3389/fcimb.2020.00107

Mermel, L. A., Allon, M., Bouza, E., Craven, D. E., Flynn, P., O'Grady, N. P., Raad, I. I., Rijnders, B. J., Sherertz, R. J., & Warren, D. K. (2009). Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 49(1), 1-45. https://doi.org/10.1086/599376

Chang, S., Sievert, D. M., Hageman, J. C., Boulton, M. L., Tenover, F. C., Downes, F. P., Shah, S., Rudrik, J. T., Pupp, G. R., & Brown, W. J. (2003). Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. New England Journal of Medicine, 348(14), 1342-1347. DOI: 10.1056/NEJMoa025025

Tille, P. (2014). Pasteurella and similar organisms. Bailey & Scotts Diagnostic Microbiology (13th ed., pp. 393). St. Louis, MO: Elsevier Mosby.

Cheesbrough ,M. District Laboratory Practice in tropical Countries ,Part l. ( 2009).

Benson, H. J. (2002). Microbiological Applications: Laboratory Manual in General Microbiology (8th ed.). McGraw-Hill

Atlas, R. (2010). Handbook of microbiological media. 4th Education. Library of Congress Cataloging-in-Publication Data. New York. USA.

Tille, P. M., & Bailey, S. (2014). Diagnostic microbiology. Misouri: Elsevier, 202-927.

Muktha, Z., Kabir, S., & Rahman, M. (2015). Isolation and identification of bacterial flora from respiratory tract of healthy horses. Journal of the Bangladesh Agricultural University, 13(452-2016-35864), 239-246 https://doi.org/10.3329/jbau.v13i2.28785

Vandamme, P., Vercauteren, E., Lammens, C., Pensart, N., Ieven, M., Pot, B., Leclercq, R., & Goossens, H. (1996). Survey of enterococcal susceptibility patterns in Belgium. Journal of Clinical Microbiology, 34(10), 2572-2576. https://doi.org/10.1128/jcm.34.10.2572-2576.1996

Balat,A.and Hill.(2003).genitourinary abnormalities is chi iron with urinary tract infection .J.Med.Sciences.29:59-63. https://dx.doi.org/10.21608/jbaar.2024.379934

Manisha, D., Abdullah, A. M. S., Zobayda, F. H., Nanda, B., Amrita, P., & Sukumar, S. (2019). Characterization of Staphylococcus aureus isolated from human dental infection. African Journal of Microbiology Research, 13(14), 273-278.‏ https://doi.org/10.5897/AJMR2019.9076

Rakotovao-Ravahatra, Z. D., Randriatsarafara, F. M., Milasoanjara, R. N., Ranaivosoa, M. K., Rakotovao, A. L., & Rasamindrakotroka, A. (2019). Assessment of the coagulase test in the identification of Staphylococcus aureus strains. Journal of Biotechnology and Biomedicine, 2(3), 105-111

Salih, R. M., Rafiq, S. N., & Hamad, P. A. (2017). Vancomycin resistance among methicillin resistant Staphylococcus aureus isolated from clinical samples in Erbil City, Iraq. Kirkuk university journal for scientific studies, 12(2), 108-20.

Blechman, S. E., & Wright, E. S. (2024). Vancomycin-resistant Staphylococcus aureus (VRSA) can overcome the cost of antibiotic resistance and may threaten vancomycin’s clinical durability. Plos Pathogens, 20(8), e1012422.‏

Barna JC, Williams DH. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol. 1984;38(1):339–357. doi: 10.1146/annurev.mi.38.100184.002011. [DOI] [PubMed] [Google Scholar]

Reynolds PE. Studies on the mode of action of vancomycin. Biochim Biophys Acta. 1961;52(2):403–405. doi: 10.1016/0006-3002(61)90698-9 . [DOI] [PubMed] [Google Scholar]

Dighriri, I. M., Alanazi, S., AlMutairi, K., Alhusayni, S. J., Balharith, F. M., Aljuwaie, R. A., ... & Jameel, O. (2025). Efficacy and Safety of Vancomycin, Linezolid, and Ceftaroline in the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA): A Systematic Review and Meta-Analysis. Cureus, 17(1).‏ ‏