Formation of Mean-Semivariance Portfolio with Stock Selection Using Fuzzy C-Means Clustering on the LQ45 Stock Index
Abstract:
Forming an optimal portfolio with a focus on minimizing risk can use the Mean-Semivariance method, which is accompanied by stock selection through clustering analysis with Fuzzy C-Means. The Fuzzy C-Means aims to group stocks based on certain characteristics. The data used are financial ratio data, namely Earning per Share (EPS), Price to Earning Ratio (PER), and Return on Equity (ROE) as criteria in the process of selecting stock securities with cluster analysis, and daily return data used for the formation of optimal stocks within the LQ45 Index. The results showed that the best number of clusters was 3 and representative stock securities of each cluster are selected based on the highest expected return value, namely UNTR and BRIS. The optimal portfolio obtained by the Mean-Semivariance method produces a weight value of 63.91% in UNTR stock securities and 36.09% in BRIS stock securities. Portfolio performance with the Sharpe index is 0.088966, which shows good portfolio performance results, and Value at Risk (VaR) calculated by Historical Simulation shows at a 95% confidence level for holding periods of 1, 7, and 30 days, respectively, it is 0.021543, 0.056998, and 0.117996.
KeyWords:
Portofolio Optimal, Fuzzy C-Means, Silhouette Coefficient, Mean-Semivariance, Indeks Sharpe, VaR
References:
- Adnyana, I. M. (2020). Manajemen Investasi dan Portofolio. Jakarta Selatan: Lembaga Penerbitan Universitas Nasional.
- Amorim, L. B., Cavalcanti, G. D., & Cruz, R. M. (2022). The Choice of Scalling technique matters for classification performance. https://arxiv.org/pdf/2212.12343.
- Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press.
- Entrisnasari, F. V. (2015). Analisis Portofolio Optimum Saham Syariah Menggunakan Mean Semivarian. Jurnal Fourier, 4(1), 31-42.
- Estrada, J. (2008). Mean-Semivariance Optimization: A Heuristic Approach. Journal of Applied Finance. 57-72.
- Gubu, L., Cahyono. E., Arman., Budiman, H., & Djafar, K. M. (2023). Optimasi Portofolio Mean-Variance dengan Analisis Klaster Fuzzy C-Means. Jurnal Gaussian, 11(4), 593-604.
- Gujarati, D. N., & Porter, D. C. (2010). Dasar-Dasar Ekonometrika Edisi 5 Buku 1. Jakarta: Salemba Empat.
- Hartono, J. (2017). Teori Portofolio dan Analisis Investasi. Edisi sebelas, BPFE Yogyakarta, Jakarta.
- Hasibuan, R. A., Rizki, S. W., & Perdana, H. (2021). Perbandingan Metode Fuzzy Clustering Means dan Single Linkage pada Pengelompokan Saham LQ45. Jurnal Untan, 10(3), 361-368.
- Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis Six Edition. New Jersey: Pearson Prentice Hall.
- Markowitz, H. (1959). Portofolio Selection: Efficient Diversification of Investment. Yale University Press.
- Maruddani, D. A. I., & Trimono. (2020). Microsoft Excel untuk Pengukuran Value at Risk: Aplikasi pada Risiko Investasi Saham. Semarang: Undip Press.
- Pakungwati, R. A., Wilandari, Y., & Maruddani, D. A. I. (2024). Metode Mean-Semivariance dalam Pembentukan Portofolio Reksa Dana Saham Terbaik Barometer Bareksa. Jurnal Gaussian, 13(1), 250-259.
- Struyf, A., Hubert, M., & Rousseeuw, P. (1997). Clustering in an Object-Oriented Environment. Journal of Statistical Software, 1(4), 1-30.
- Tandelilin, E. (2017). Pasar Modal Manajemen Portofolio dan Investasi. Yogyakarta: Penerbit PT Kanisius.